Nonlinear algebra and matrix completion

Daniel Irving Bernstein

Massachusetts Institute of Technology and ICERM

dibernst@mit.edu
dibernstein.github.io
Funding and institutional acknowledgments

- Aalto University summer school on algebra, statistics, and combinatorics (2016)
- David and Lucile Packard Foundation
- NSF DMS-0954865, DMS-1802902
- ICERM
Motivation

Problem
Let $\Omega \subseteq [m] \times [n]$. For a given Ω-partial matrix $X \in \mathbb{C}^\Omega$, the low-rank matrix completion problem is

Minimize $\text{rank}(M)$ subject to $M_{ij} = X_{ij}$ for all $(i, j) \in \Omega$

Example
Let $\Omega = \{(1, 1), (1, 2), (2, 1)\}$ and consider the following Ω-partial matrix

$$X = \begin{pmatrix} 1 & 2 \\ 3 & \cdot \end{pmatrix}.$$

Some applications:
- Collaborative filtering (e.g. the “Netflix problem”)
- Computer vision
- Existence of MLE in Gaussian graphical models (Uhler 2012)
State of the art: nuclear norm minimization

The nuclear norm of a matrix, denoted $\| \cdot \|_*$, is the sum of its singular values.

Theorem (Candès and Tao 2010)

Let $M \in \mathbb{R}^{m \times n}$ be a fixed matrix of rank r that is sufficiently “incoherent.” Let $\Omega \subseteq [m] \times [n]$ index a set of k entries of M chosen uniformly at random. Then with “high probability,” M is the unique solution to

$$\text{minimize} \quad \|X\|_*$$

subject to $X_{ij} = M_{ij}$ for all $(i, j) \in \Omega$.

The upshot: the minimum rank completion of a partial matrix can be recovered via semidefinite programming if:

- the known entries are chosen uniformly at random
- the completed matrix is sufficiently “incoherent”

Goal: use algebraic geometry to understand the structure of low-rank matrix completion and develop methods not requiring above assumptions.
The algebraic approach

Some subsets of entries of a rank- \(r \) matrix satisfy nontrivial polynomials.

Example

If the following matrix has rank 1, then the bold entries must satisfy the following polynomial

\[
\begin{pmatrix}
 x_{11} & x_{12} & x_{13} \\
 x_{21} & x_{22} & x_{23} \\
 x_{31} & x_{32} & x_{33}
\end{pmatrix}
\]

\[x_{12}x_{21}x_{33} - x_{13}x_{31}x_{11} = 0\]

Király, Theran, and Tomioka propose using these polynomials to:

- Bound rank of completion of a partial matrix from below
- Solve for missing entries

Question

Which subsets of entries of an \(m \times n \) matrix of rank \(r \) satisfy nontrivial polynomials?
Graphs and partial matrices

Subsets of entries of a matrix can be encoded by graphs:

- non-symmetric matrices \rightarrow bipartite graphs
- symmetric matrices \rightarrow semisimple graphs

| $\text{Mat}_{r}^{m\times n}$ | $m \times n$ matrices of rank $\leq r$ | \[
\begin{pmatrix}
5 & \cdot & \cdot \\
-4 & -2 & \cdot \\
\cdot & 8 & 3
\end{pmatrix}
\] | \begin{tikzpicture}
 \node (1) at (0,0) [circle,fill,inner sep=2pt]{\textcolor{white}{1}};
 \node (2) at (1,0) [circle,fill,inner sep=2pt]{\textcolor{white}{2}};
 \node (3) at (2,0) [circle,fill,inner sep=2pt]{\textcolor{white}{3}};
 \draw (1) -- (2);
 \draw (2) -- (3);
\end{tikzpicture}|

| $\text{Sym}_{r}^{n\times n}$ | $n \times n$ symmetric matrices of rank $\leq r$ | \[
\begin{pmatrix}
7 & 4 & \cdot \\
4 & \cdot & 9 \\
\cdot & 9 & 5
\end{pmatrix}
\] | \begin{tikzpicture}
 \node (1) at (0,0) [circle,fill,inner sep=2pt]{\textcolor{white}{1}};
 \node (2) at (1,0) [circle,fill,inner sep=2pt]{\textcolor{white}{2}};
 \node (3) at (2,0) [circle,fill,inner sep=2pt]{\textcolor{white}{3}};
 \draw (1) -- (2);
 \draw (2) -- (3);
\end{tikzpicture}|

- A **G-partial matrix** is a partial matrix whose known entries lie at the positions corresponding to the edges of G.
- A **completion** of a G-partial matrix M is a matrix whose entries at positions corresponding to edges of G agree with the entries of M.
Generic completion rank

Definition

Given a (bipartite/semisimple) graph G, the *generic completion rank of G*, denoted $\text{gcr}(G)$, is the minimum rank of a complex completion of a G-partial matrix with generic entries.

<table>
<thead>
<tr>
<th>type</th>
<th>G</th>
<th>pattern</th>
<th>$\text{gcr}(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>symm</td>
<td></td>
<td>$\begin{pmatrix} a_{11} & ? \ ? & a_{22} \end{pmatrix}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>symm</td>
<td></td>
<td>$\begin{pmatrix} a_{11} & a_{12} & ? \ a_{12} & a_{22} & a_{23} \ ? & a_{23} & ? \end{pmatrix}$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non</td>
<td></td>
<td>$\begin{pmatrix} a_{11} & a_{12} & ? \ a_{21} & ? & a_{23} \end{pmatrix}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>r1 c1 r2 c2 c3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem
Gain a combinatorial understanding of generic completion rank - how can one use the combinatorics of G to infer $gcr(G)$?

Proposition (Folklore)
Given a bipartite graph G, $gcr(G) \leq 1$ iff G has no cycles.

Proposition (Folklore)
Given a semisimple graph G, $gcr(G) \leq 1$ iff G has no even cycles, and every connected component has at most one odd cycle.
A cycle in a directed graph is **alternating** if the edge directions alternate.

Theorem (B.-, 2016)

Given a bipartite graph G, $\text{gcr}(G) \leq 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.
A cycle in a directed graph is \textit{alternating} if the edge directions alternate.

\textbf{Theorem (B.-., 2016)}

Given a bipartite graph G, $\text{gcr}(G) \leq 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.
Proof sketch

Theorem (B.-, 2016)

Given a bipartite graph \(G \), \(gcr(G) \leq 2 \) if and only if there exists an acyclic orientation of \(G \) that has no alternating cycle.

- Rephrase the question: describe the independent sets in the algebraic matroid underlying the variety of \(m \times n \) matrices of rank at most 2
- This algebraic matroid is a restriction of the algebraic matroid underlying a Grassmannian \(Gr(2, N) \) of affine planes
- Algebraic matroid structure is preserved under tropicalization
- Apply Speyer and Sturmfels’ result characterizing the tropicalization of \(Gr(2, N) \) in terms of tree metrics to reduce to an easier combinatorial problem

Open question

Does there exist a polynomial time algorithm to check the combinatorial condition in the above theorem, or is this decision problem NP-hard?
Issue: real vs complex

What happens when you only want to consider real completions?

Definition

Given a bipartite or semisimple graph G, there may exist multiple open sets U_1, \ldots, U_k in the space of real G-partial matrices such that the minimum rank of a completion of a partial matrix in U_i is r_i. We call the r_is the typical ranks of G.

The graph $\bullet \ \bullet$ has typical ranks 1 and 2.

\[
\begin{pmatrix}
a_{11} & \cdot \\
\cdot & a_{22}
\end{pmatrix}
\]

In a completion to rank 1, the missing entry t must satisfy $a_{11}a_{22} - t^2 = 0$.
Facts about typical ranks

Proposition (B.-Blekherman-Sinn 2018)

Let G be a bipartite or semisimple graph.

1. The minimum typical rank of G is $\text{gcr}(G)$.
2. The maximum typical rank of G is at most $2\text{gcr}(G)$.
3. All integers between $\text{gcr}(G)$ and the maximum typical rank of G are also typical ranks of G.

See also Bernardi, Blekherman, and Ottaviani 2015 and Blekherman and Teitler 2015.
Case study: disjoint union of cliques

Let $K_m \sqcup K_n$ denote the disjoint union of two cliques with all loops.

$$K_3 \sqcup K_4 = \begin{array}{c}
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\end{array}$$

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & ? & ? & ? & ? \\
a_{12} & a_{22} & a_{23} & ? & ? & ? & ? \\
a_{13} & a_{23} & a_{33} & ? & ? & ? & ? \\
? & ? & ? & a_{44} & a_{45} & a_{46} & a_{47} \\
? & ? & ? & a_{45} & a_{55} & a_{56} & a_{57} \\
? & ? & ? & a_{46} & a_{56} & a_{66} & a_{67} \\
? & ? & ? & a_{47} & a_{57} & a_{67} & a_{77}
\end{pmatrix}$$

Proposition (B.-Blekherman-Lee)

The generic completion rank of $K_m \sqcup K_n$ is $\max\{m, n\}$. The maximum typical rank of $K_m \sqcup K_n$ is $m + n$.
Proposition (B.-Blekherman-Lee)

The generic completion rank of $K_m \sqcup K_n$ is $\max\{m, n\}$. The maximum typical rank of $K_m \sqcup K_n$ is $m + n$.

A $(K_m \sqcup K_n)$-partial matrix looks like:

$$M = \begin{pmatrix} A & X \\ X^T & B \end{pmatrix}.$$

By Schur complements:

$$\text{rank}(M) = \text{rank}(A) + \text{rank}(B - X^T A^{-1} X).$$

If $A \prec 0$ and $B \succ 0$, then $\det(B - X^T A^{-1} X) > 0$ for real X.

Corollary

Every integer between $\max\{m, n\}$ and $m + n$ is a typical rank of $K_m \sqcup K_n$.
Case study: disjoint union of cliques

Given real symmetric matrices A and B of full rank, of possibly different sizes:

- p_A (p_B) denotes the number of positive eigenvalues of A (B)
- n_A (n_B) denotes the number of negative eigenvalues of A (B)
- the **eigenvalue sign disagreement of A and B** is defined as:

$$\text{esd}(A, B) := \begin{cases}
0 & \text{if } (p_A - p_B)(n_A - n_B) \geq 0 \\
\min\{|p_A - p_B|, |n_A - n_B|\} & \text{otherwise}
\end{cases}$$

Theorem (B.-Blekherman-Lee)

Let $M = \begin{pmatrix} A & X \\ X^T & B \end{pmatrix}$ be a generic real $K_m \sqcup K_n$-partial matrix. Then M is minimally completable to rank $\max\{m, n\} + \text{esd}(A, B)$.
When full rank is typical

Theorem (B.-Blekherman-Lee)

Let G be a semisimple graph on n vertices. Then n is a typical rank of G if and only if the complement graph of G is bipartite.

If the complement is bipartite, then n is a typical rank:

$$M = \begin{pmatrix} A & X \\ X^T & B \end{pmatrix}$$

By Schur complements:

$$\text{rank}(M) = \text{rank}(A) + \text{rank}(B - X^T A^{-1} X),$$

so if $A \prec 0$ and $B \succ 0$, then $\det(B - X^T A^{-1} X)$ is strictly positive.
When full rank is typical

Theorem (B.-Blekherman-Lee)

Let G be a semisimple graph on n vertices. Then n is a typical rank of G if and only if the complement graph of G is bipartite.

If complement is *not* bipartite, then n is *not* a typical rank:

- A graph is bipartite if and only if it is free of odd cycles
- If complement graph *is* an odd cycle, then determinant of a G-partial matrix, viewed as a polynomial in the unknown entries, has odd degree
- Deleting edges from a graph will not increase maximum typical rank.

\[
\begin{pmatrix}
 a_{11} & x & a_{13} & a_{14} & t \\
x & a_{22} & y & a_{24} & a_{25} \\
a_{13} & y & a_{33} & z & a_{35} \\
a_{14} & a_{24} & z & a_{44} & w \\
t & a_{25} & a_{35} & w & a_{55}
\end{pmatrix}
\]
Typical ranks for nonsymmetric matrices: some examples

The following bipartite graph has 2 and 3 as typical ranks.

\[
\begin{pmatrix}
? & a_{12} & a_{13} & a_{14} \\
 a_{21} & ? & a_{23} & a_{24} \\
a_{31} & a_{32} & ? & a_{34} \\
a_{41} & a_{42} & a_{43} & ?
\end{pmatrix}
\]

Let \(\text{mtr}(G) \) denote the maximum typical rank of \(G \).

Theorem (B.-Blekherman-Sinn)

Let \(G \) be obtained by gluing two bipartite graphs \(G_1 \) and \(G_2 \) along a complete bipartite subgraph \(K_{m,n} \). If

\[
\max\{ \text{mtr}(G_1), \text{mtr}(G_2) \} \geq \max\{ m, n \},
\]

then \(\text{mtr}(G) = \max\{ \text{mtr}(G_1), \text{mtr}(G_2) \} \). The same is true for generic completion rank.

Open question

Does there exist a bipartite graph that has more than two typical ranks?
Empty k-cores

The k–core of a graph G is the graph obtained by iteratively removing vertices of degree $k - 1$ or less. The 2-core of the graph below is empty.

\[
\begin{align*}
\text{\textbullet} & \quad \rightarrow \quad \text{\textbullet} \\
\text{\textbullet} & \quad \rightarrow \quad \text{\textbullet} \\
\text{\textbullet} & \quad \rightarrow \quad \text{\textbullet} \\
\end{align*}
\]

Theorem (B.-, Blekherman, Sinn)

Let G be bipartite. If the k-core of G is empty, then all typical ranks of G are at most $k - 1$.

Corollary

Let G be bipartite. Then the maximum typical rank of G is $2 \text{gcr}(G) - 1$.

Open question

Which bipartite graphs of generic completion rank 2 also have 3 as a typical rank?
Conclusion

- All generic G-partial matrices can be completed to rank $\text{gcr}(G)$ over \mathbb{C}
- We can characterize all the bipartite graphs with generic completion rank ≤ 2 (semisimple case is still open)
- Over the reals, a graph can have many typical ranks

Open problems:
- Find a polynomial-time algorithm to decide if a given bipartite graph has an acyclic orientation with no alternating cycle, or prove that this decision problem is NP-hard
- Find a bipartite graph that exhibits three or more typical ranks
- Characterize the graphs with generic completion rank 2 that also exhibit 3 as a typical rank
A. Bernardi, G. Blekherman, and G. Ottaviani.
On real typical ranks.

Daniel Irving Bernstein.
Completion of tree metrics and rank-2 matrices.
_arXiv:1612.06797, 2017

Daniel Irving Bernstein, Grigoriy Blekherman, and Rainer Sinn.
Typical and generic ranks in matrix completion.

Grigoriy Blekherman and Zach Teitler.
On maximum, typical and generic ranks.

Emmanuel J. Candès and Terence Tao
The power of convex relaxation: near-optimal matrix completion.

Franz Király, Louis Theran, and Ryota Tomioka.
The algebraic combinatorial approach for low-rank matrix completion.